Lecture 11: Introduction to QCD

Sept 29, 2016

Outline

- Why Color?
- From Color to the QCD LaGrangian
- ullet The Running of $lpha_s$
- ullet Implications for $e^+e^-
 ightarrow {
 m Hadrons}$
- Discovery of Jets
- Describing quark hadronization

Why Color (I)

Imposition of Fermi Statistics

 $\Delta^{++} = uuu$: Identical particles

- ► spin=3/2: Symmetric under interchange
- s-wave $(\ell = 0)$: Symmetric under interchange
- Need another degree of freedom to antisymmetrize
 Need at least 3 possible states to antisymmetrize 3 objects

 $\pi^0 \to \gamma \gamma$

Decay process through an internal quark loop

$$\Gamma \propto N_C^2 (Q_U^2 - Q_d^2)^2$$

Consistent with 3 colors

Why Color (II): $e^+e^- \rightarrow hadrons$

- Describe process $e^+e^- \to hadrons$ as $e^+e^- \to q\overline{q}$ where q and \overline{q} turn into hadrons with probability=1
- Same Feynman diagram as $e^+e^-\to \mu^+\mu^-$ except for charge. To lowest order (no QCD corrections)

$$R = \frac{\sigma(e^+e^- \to hadrons)}{e^+e^- \to \mu^+\mu^-} = N_C \sum_q e_q^2$$

where N_{C} counts number of color degrees of freedom and sum is over all quark species kinematically allowed

$e^+e^- \rightarrow hadrons$: Measurement of R

$$R \equiv \frac{\sigma(e^+e^- \to hadrons)}{e^+e^- \to \mu^+\mu^-}$$
$$= N_C \sum_q e_q^2$$

where N_C is number of colors

 $\bullet \ \ \, \text{Below} \, \sqrt{s} \sim 3.1 \, \, \text{GeV}, \, R=2 \\ \ \, \text{Only} \, \, u, \, d, \, s \, \, \text{quark-antiquark pairs} \\ \ \, \text{can be created}$

$$\sum_{q} e_q^2 = \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2$$
$$= \frac{6}{9} = \frac{2}{3} \Rightarrow N_c = 3$$

- Above 3.1 GeV, charm pairs produced; R increases by $3(\frac{2}{3})^2 = \frac{4}{3}$
- Above 9.4 GeV, bottom pairs produced, R increases by $3(\frac{1}{3})^2 = \frac{1}{3}$

From Color To QCD (I)

- ullet R tell us \exists 3 colors, but doesn't tell us anything about the color force.
- Theory of Strong Interactions QCD developed in analogy with QED:
 - Assume color is a continuous rather than a discrete symmetry
 - ► Postulate local gauge invariance
 - Describe our fundamental fermion fields as a 3-vector in color space

$$\psi = \left(\begin{array}{c} \psi_r \\ \psi_b \\ \psi_g \end{array}\right)$$

 Let's take SU(3) as our the candiate for the rotation group for this 3-space

$$\psi'(x) = e^{i\lambda^i \alpha_i/2}$$

where the λ^i are the 8 SU(3) matrices we already know

From Color To QCD (II)

• Impose local Gauge Invariance by introducing terms in A_μ and the quark kinetic energy term ∂_μ :

$$A\mu \rightarrow A\mu + \partial_{\mu}\alpha$$

$$\mathcal{D}_{\mu} \equiv \partial_{\mu} - i\frac{g}{2}\lambda_{a}A_{\mu}^{a}$$

where A_{μ} is a 3×3 matrix in color space formed from the 8 color fields and λ_i are the SU(3) matrices and i goes from 1 to 8

• The tensor field is:

$$G_{\mu\nu} = \frac{1}{ig} [\mathcal{D}_{\nu}, \mathcal{D}_{\mu}] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + ig[A_{\nu}, A_{\mu}]$$

$$G^{a}_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + f_{abc} A^{b}_{\mu} A^{c}_{\nu}$$

This plays the same role as $F_{\mu\nu}$ in QCD

- ullet Note: unlike QED, there are several A fields and these A don't commute!
 - ▶ This means that the gluons have color charge and interact with each other
 - Note that there is no color singlet gluon

The QCD Feynman Diagrams

- ullet qqg vertex looks just like $qq\gamma$ with e o g
- Three and four gluon vertices
 - ▶ Three gluon coupling strength gf^{abc}
 - Four gluon coupling strength $g^2 f^{xac} f^{xbd}$

where

$$\left[\frac{\lambda_a}{2}, \frac{\lambda_b}{2}\right] = i f_{abc} \frac{\lambda_c}{2}$$

and $f_{123}=1$, $f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2}$, $f_{156}=f_{367}=-\frac{1}{2}$, $f_{458}=f_{678}=\sqrt{3}/2$.

The Running of α_s (I)

- ullet In calculating R, assumed that strong interactions didn't significantly affect the cross section; derived this using impulse approximation
 - Quarks act as if they are free during the EM interaction
- \bullet Seems odd since α_s is large, as measured via the decay widths of strong decays
- Great success of QCD is ability to explain why strong interactions are strong at low q^2 but quarks act like free particles at high q^2
- Coupling constant α_s runs; It is a function of q^2

```
Low q^2 \alpha_s large "confinement"
High q^2 \alpha_s small "asympotic freedom"
```

- This running is not unique to QCD; Same phenomenon in QED
 - lacktriangle But lpha runs more slowly and in opposite direction
 - Eg at $q^2 = M_z^2$, $\alpha(M_Z^2) \sim 1/129$
- Running of the coupling constant is a consequence of renormalization
- Incorporation of infinities of the theory into the definitions of physical observables such as charge, mass

The Running of α_s (II)

 \bullet QED and QCD relate the value of the coupling constant at one q^2 to that at another through renormalization procedure

$$\begin{split} \alpha(Q^2) &= \frac{\alpha(\mu^2)}{1 - \frac{\alpha(\mu^2)}{3\pi} \log\left(\frac{Q^2}{\mu^2}\right)} \\ \alpha_s(Q^2) &= \frac{\alpha_s(\mu^2)}{1 + \frac{\alpha_s(\mu^2)}{12\pi} \left(33 - 2n_f\right) \log\left(\frac{Q^2}{\mu^2}\right)} \end{split}$$

- ullet In the case of QED, the natural place to measure lpha is clear: $Q^2
 ightarrow 0$
- Since α_s is large at low Q^2 , no obvious μ^2 to choose
- \bullet It is customary (although a bit bizarre) to define things in terms of the point where α_s becomes large

$$\Lambda^2 \equiv \mu^2 \exp \left[\frac{-12\pi}{\left(33 - 2n_f \right) \alpha_s(\mu^2)} \right]$$

With this definition

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2n_f)\log(Q^2/\Lambda^2)}$$

- lacktriangle For $Q^2\gg\Lambda^2$, coupling is small and perturbation theory works
- ▶ For $Q^2 \sim \Lambda^2$, physics is non-perturbative
- Experimentally, $\Lambda \sim$ few hundred MeV

Why do coupling constants run?

- Higher order loop corrections in propagator
 - Photon propagator only has fermion loops
 - Gluon propagator also has gluon loops
 - ► Fermion and gluon loop terms opposite have opposite sign
 - ► Hence running depends on number of flavors
- Must perform renormalization to remove unphysical infinities

Measurements of α_s

We'll talk more about how these measurements over next few weeks

Implications of the Running of α_s

• α_s small at high q^2 :

High q^2 processes can be described perturbatively

- For DIS and $e^+e^- \to hadrons$, the lowest order process is electromagnetic or weak
- Higher order perturbative QCD corrections can be added to the basic process
- Processes we will discuss later (such as pp collisions), the lowest order process will be QCD
- ► Again, can include perturbative corrections
- α_s large at low q^2 :

Quarks dress themselves as hadrons with probability=1 and on a time scale long compared to the hard scattering

- Describe dressing of final quark and antiquark (and gluons if we consider higher order corrections) into a "Fragmentation Function"
- Process of quarks and gluons turning into hadrons is called hadronization

Hadronization as a Showering Process

- Similar description to the EM shower that you modeled in HW# 1
 - Quarks radiate gluons
 - Gluons make $q\overline{q}$ pairs, and can also radiate gluons
- Must in the end produce color singlets
 - ▶ Nearby q and \overline{q} combine to form clusters or hadrons
 - ► Clusters or hadrons then can decay
- Warning: Picture does not make topology of the production clear
 - ► Gluon radiation peaked in direction of initial partons
 - ► Expect collimated "jets" of particles following initial partons

Discovery of Jet Structure: Strategy

- \bullet While jets are clearly visible by eye at high energy, not the case for original experiments at low \sqrt{s}
- Discovery of jet structure required a statistical analysis using a global metric
 - Is the event spherical (as phase space would predict) or does it have a defined axis (the directions of the initial quark and anti-quark)?
- Define Sphericity Tensor

$$M_{ab} = \sum_{i}^{N} p_{ia} p_{ib}$$

where a and b label x, y and z axes and the sum over i is a sum over all the (charged) particles in the event

- This looks just like a moment of inertia tensor
 - ► The relative value of the 3 eigenvalues tell us about the shape

Eigenvalues of the Sphericity Tensor

From previous page: Sphericity Tensor

$$M_{ab} = \sum_{i}^{N} p_{ia} p_{ib}$$

• Define the 3 normalized eigenvalues:

$$Q_k \equiv \frac{\Lambda_k}{\sum_i^N p_i^2}$$

where Λ_k are the 3 eigenvalues of the matrix

- ullet The principle axis \hat{n}_3 is defined to be the jet axis
 - ► Method designed to identify narrow back-to-back jets
- ullet Define the sphericity S

$$S = \frac{3}{2}(Q_1 + Q_2) = \frac{3}{2} \sum_{i} \frac{(p_{T,i}^2)_{min}}{\sum_{i} p_i^2}$$

Emergence of Jets

Phys. Rev. Lett. 35, 1609 (1975)

- Data collected by Mark-I experiment at SPEAR e^+e^- collider
- Study sphericity distribution for different E_{cm}
- Compare to a jet model and a phase space model
- \bullet As E_{cm} increase, data becomes consistent with jet model
 - Not consistent with phase space

Angular dependence of jet axis (same paper)

- Assume jet axis provides estimate of direction of outgoing quarks
- Since quarks have spin-¹/₂, distribution in polar angle

$$\frac{dN}{d\cos\theta} = 1 + \cos^2\theta$$

- ullet But Mark-I had limited $\cos heta$ coverage!
- ullet But, if incoming beams transversely polarized, there is also a ϕ dependence

$$\frac{dN}{d\cos\theta} = 1 + \cos^2\theta + P_+ P_- \sin^2\phi \cos 2\phi$$

- ullet Turns out that beams at SLAC were transversely polarized with polarization dependent on E_{cm}
- Angular dependence consistent with expectations for spin-1/2 Dirac particles

An alternative event shape variable: Thrust

- ullet Sphericity quadratic in p
 - Sensitive to hadronization details
- Linear alternative: Thrust axis

$$T = \max \frac{\sum |\vec{p_i}| \cdot \hat{n_T}}{\sum |\vec{p_i}|}$$

- Both choices appear to track quark direction well
 - Again, clear evidence for spin- $\frac{1}{2}$ quarks

QCD at Many scales

- Impulse approximation
 - ► Short time scale hard scattering (EM interaction in this case)
 - ► Perturbative QCD corrections (will discuss next time)
 - ► Long time scale hadronization process
- Approach to the hadronization:
 - Describe distributions individual hadrons statistically
 - Collect hadrons together to approximate the properties of the quarks and gluons they came from

Describe non-perturbative effects using a phenomonological model

Hadronization and Fragmentation Functions

- Define distribution of hadrons using a "fragmentation function":
 - ▶ Suppose we want to describe $e^+e^- \to h \; X$ where h is a specific particle (eg π^-)
 - $lackbox{ Need probability that a }q$ or \overline{q} will fragment into h
 - ▶ Define $D_q^h(z)$ as probability that a quark q will fragment to form a hadron that carries fraction $z = E_h/E_q$ of the initial quark energy
 - lacktriangle We cannot predict $D_q^h(z)$
 - Measure them in one process and then ask are they universal
- These $D_q^h(z)$ are essential for Monte Carlo programs used to predict the hadron level output of a given experiment ("engineering numbers")
- But in the end, what we really care about is how to combine the hadrons to learn about the quarks and gluons they came from

Fragmentation Functions Measured in e^+e^- Annihilation

- Once momentum of hadron well above its mass, $D_a^h(z)$ almost independent of \sqrt{s}
 - Fragmentation functions exhibit scaling with logrithmic dependence on \sqrt{s}
- Overall charged multiplicity

$$< N_h > = \int_{z_{min}}^1 F(z) dz$$

• A common parameterization of F(z):

$$F(z) = N \frac{(1-z)^n}{z}$$

where n is a fitted parameter

For this parameterization

$$< N > = (n + 1) < z >$$

Another Way of Thinking About Hadronization

- ullet q and \overline{q} move in opposite directions, creating a color dipole field
- Color Dipole looks different from familiar electric dipole:
 - ▶ Confinement: At low q^2 quarks become confined to hadrons
 - ▶ Scale for this confinement, hadronic mass scale: $\Lambda = \text{few } 100 \text{ MeV}$
 - ▶ Coherent effects from multiple gluon emission shield color field far from the colored q and \overline{q}
 - Instead of extending through all space, color dipole field is flux tube with limited transverse extent
- Gauss's law in one dimensional field: E independent of x and thus $V(x_1-x_2)=k(x_1-x_2)$ where k is a property of the QCD field (often called the "string tension")
 - \blacktriangleright Experimentally, $k=1~{\rm GeV/fm}=0.2~{\rm GeV}^{-2}$
 - As the q and \overline{q} separate, the energy in the color field becomes large enough that $q\overline{q}$ pair production can occur
 - ► This process continues multiple times
 - ▶ Neighboring $q\overline{q}$ pairs combine to form hadrons

Color Flux Tubes

- Particle production is a stocastic process: the pair production can occur anywhere along the color field
- Quantum numbers are conserved locally in the pair production
- Appearence of the q and \overline{q} is a quantum tunneling phenomenon: $q\overline{q}$ separate eating the color field and appear as physical particles

Jet Production

• Probability for producing pair depends quark masses

Prob
$$\propto e^{-m^2/k}$$

relative rates of popping different flavors from the field are

$$u:d:s:c=1:1:0.37:10^{-10}$$

- ullet Limited momentum tranverve to $q\overline{q}$ axis
 - If q and \overline{q} each have tranverse momentum $\sim \Lambda$ (think of this as the sigma) the mesons will have $\sim \sqrt{2}\Lambda$
 - Meson transverse momentum (at lowest order) independent of qq center of mass energy
 - ► As E_{cm} increases, the hadrons collimate: "jets"

Characterizing hadronization using e^+e^- data: Limited Transverse Momentum

- q and q move in opposite directions, creating a color dipole field
 - Confinement limits transverse dimensions of the field
- Limited p_T wrt jet axis

 - Well described by Gaussian distribution

O [4.1] normalized differential cross section for the square of the momentum component transverse to the jet axis (= spherici = 14, 22, 34 and 41.5 GeV.

 Range of longitudinal momenta (see next page)

Characterizing hadronization using e^+e^- data: Rapidity and Longitudinal Momentum

• Define new variable: rapidity

$$y = \frac{1}{2} \ln \frac{E + p_{||}}{E - p_{||}}$$

Warning: Not the same y as in DIS

Phase space with limited transverse momentum:

$$\frac{d^3p}{E} \to e^{-p_T^2/s\sigma^2} dp_T \frac{dp_{||}}{E}$$

But

$$dy = \frac{dp_{||}}{E}$$

(you will prove this on HW #6)

 Rapidity is a longitudinal phase space variable

- Particle production flat in rapidity
- y_{max} set by kinematic limit $(E p_{||}) \ge m_h$
- ullet Height of plateau independent of \sqrt{s}
 - ► Multiplicity increase due to change in y_{max}
 - $ightharpoonup < N_h > \sim \ln(\frac{E_{cm}}{m_h})$

Hadronization: Particle Multiplicity

Fig. 4.1. Energy dependence of the average charged multiplicity.

- HW #6 will include derivation of $< N_h > \sim \ln(\frac{E_{cm}}{m_h})$
- This expression holds for E_{cm} above a few GeV

More on the sphericity tensor

- At SPEAR, seeing jets was difficult
 - Fixed transverse spread and small longitudinal momentum means the jets are wide
- As the energy increases, jets narrow: can look for wide angle gluon emission (3-jet events)
- QCD brem cross section diverges for colinear gluons or when the gluon momentum goes to zero
 - But that is the case where we can't distinguish 2 and 3 jet events anyway
 - ➤ Total cross section is finite (QCD corrections to *R*)
- Can use the sphericity tensor to search for 3-jet events (gluon brem)